A Self-Organizing Neural Network Architecture
for Intentional Planning Agents

Budhitama Subagdja
Intelligent Systems Centre
Nanyang Technological University
budhitama{at}ntu.edu.sg

ABSTRACT

This paper presents a model of neural network embodi-
ment of intentions and planning mechanisms for autonomous
agents. The model bridges the dichotomy of symbolic and
non-symbolic representation in developing agents. Some
novel techniques are introduced that enables the neural net-
work to process and manipulate sequential and hierarchi-
cal structures of information. It is suggested that by in-
corporating intentional agent model which relies on explicit
symbolic description with self-organizing neural networks
that are good at learning and recognizing patterns, the best
from both sides can be exploited. This paper demonstrates
that plans can be represented as weighted connections and
reasoning processes can be accommodated through multi-
directional activations accross different modalities of pat-
terns. The network seamlessly interleaves planning and learn-
ing processes towards achieving the goal. Case studies and
experiments shows that the model can be used to execute,
plan, and capture plans as recipes through experiences.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; 1.2.8 [Problem Solving, Control Methods, and
Search|: Plan execution, formation, and generation; 1.2.6
[Learning]: Connectionism and neural nets

General Terms

Theory, Design, Experimentation

Keywords
BDI agent, fusion ART, iFALCON

1. INTRODUCTION

Being able to function and adapt in a complex changing
environment is a key characteristic of an autonomous agent.
The agent must cope with risks and surprises by continu-
ously reasoning, learning, and planning. The agent plans
by constructing a description of a course of action that may
solve a given problem or achieving some goals. The output
of planning is a plan or a recipe that the agent can execute

Cite as: A Self-Organizing Neural Network Architecture for Intentional
Planning Agents, Budhitama Subagdja, Ah-Hwee Tan, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10-15, 2009,
Budapest, Hungary, pp. 1081-1088

Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

1081

Ah-Hwee Tan
School of Computer Engineering
Nanyang Technological University
asahtan{at}ntu.edu.sg

to achieve its goals. When time or resources for planning
are limited, the criteria can be made less restrictive by as-
suming that some partial plans are provided at the design
time hence the planning task becomes assembling the plans
at runtime. This kind of alternative to plan is a common
approach in intentional agents architecture (such as beliefs-
desires-intentions (BDI) model [13]). In any case, planning
agents commonly rely on extensive use of explicit symbolic
representation of plans. The performance of a resource-
bounded agent, in particular, depends mainly on careful
analysis and design by the developer.

On the other hand, in non-symbolic realms of modeling,
uncertainties, possible risks, and lack of knowledge are usu-
ally addressed through processes of learning. The informa-
tion and knowledge are processed and represented implic-
itly governed by ad hoc calculations with less interventions
from the developers or users. Neural networks, as a kind
of non-symbolic architecture, are inspired by properties of
biological brain. Given the appropriate samples, a neural
network model can learn to solve problems or generalize the
outputs given new inputs. Although they inherently support
learning and pattern recognition, they are still considered to
represent the knowledge implicitly. A neural network agent
may be able to automatically learn and update its knowl-
edge by experience, but it may also be difficult to ensure
that its behavior conforms with some explicitly prescribed
instructions.

In this paper, it is argued and demonstrated otherwise
that symbolic and non-symbolic approaches support and en-
rich each other in realizing intentional agents. It is possible
to construct a neural network model to realize an intentional
agent that accepts and maps symbolic descriptions while be-
ing adaptive to different online situations. Moreover, the
learning mechanism can use the plan representation as the
target knowledge as well. The knowledge captured through
the learning include hierarchical structure of plans. There-
fore, there is no need to separate the planning from learning
processes as it is unnecessary to separate pattern recognition
tasks from the respective neural weights adjustment. This
approach may also bridge agent models specified in formal
symbolic descriptions with their plausible neural embodi-
ments.

The rest of the paper is organized as follows. Section 2
discusses the use of plans and the process of planning in
autonomous agents. It provides an overview of intentional
agent architectures and how they deal with resources limi-
tations. Section 3 explains and demonstrates how the plan
representation and planning mechanisms can be realized in

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

a self-organizing neural network. Based on a multi-channel
adaptive resonance theory network, novel techniques are in-
troduced for computing sequential and hierarchical struc-
tures of information. It also includes discussions on how
deliberation, planning, and learning processes can be com-
bined together in the neural model. Section 4 shows some
results from our experiment of applying the self-organizing
neural architecture. Section 5 summarizes and concludes the
paper.

2. PLANS AND PLANNING AGENTS

Planning is the process of deciding how to achieve an end
using the available means. Given the current goals, beliefs
about the state of the environment, and a set of actions
available, the agent generates a plan as a course of action.
Planning can range from assembling a complete course of
action which consists of atomic components of the actions
available (first principle) to rather selecting and executing
predefined plans from a repository of recipes. The appropri-
ate allocation between planning and execution depends on
the kind of tasks and environment. The main problem of
planning from the first principle is that it is very costly to
be applied for agents that make decisions, plan, and act in
real time [6].

In practice, a collection of partial plans is assumed to be
pre-given offline and the planning task becomes interleaving
the assembly and execution of the partial plans. This relaxed
method of planning reduces the amount of resources required
for reasoning about plans [2, 12]. In domains involving much
interactions with the environment and unpredictable situa-
tions, feedbacks may also be needed to refine the existing
plans to fit with the actual conditions [10]. Thus, plans can
have two kinds of roles: as recipes or knowledge of actions
to achieve certain goals, and as mental-attitudes that deter-
mine and characterize the agent’s behavior [2, 11]. An agent
whose behavior can be predicted and explained based on its
mental attitudes can be said as intentional [5].

2.1 Intentional Agent Architecture

An intentional agent is characterized with mental attributes
that are commonly used to characterize people. Derived
from folk psychology, an intentional agent architecture such
as a BDI (Beliefs, Desires, Intentions) [13] agent uses at-
tributes of beliefs, desires, and intentions) to direct its ac-
tions and selection of plans to achieve its goal. This kind of
agent works as an interpreter that operates on those repre-
sentations of mental attitudes.

Beliefs or belief base is a data structure that corresponds
to a model or knowledge about the world and/or about the
agent itself. In most implemented intentional agents, beliefs
are predicate logic statements or propositions about what
currently holds or does not hold (negation) in binary logic
(true or false). Desires is a set of goal condition that the
agent wants to achieve. As computational resources are lim-
ited, the agent must choose intentions as the state of affairs
the agent has decided to pursue.

An intention is a plan as a mental attitude [11]. It is
a decision comprising the goal and actions to take. The
decision may recurse so that the agent may select intentions
at a lower level of abstraction and so on, until arrives at the
one that is directly executable. In Procedural Reasoning
System (PRS) [8], as one of the first implemented model of
BDI agent, intentions are stored in the intention structure

1082

which has a hierarchical stack structure. The stack contains
selected goals that are pending achievement and the current
state of the execution.

As a recipe, a plan is a procedural knowledge structure
that specifies how to achieve certain goals. The plan typi-
cally has the following attributes:

e (Goal. The plan goal is the postcondition that will hold
after the plan is executed.

e Precondition. The plan precondition specifies the con-
dition that must be held so that the plan is applicable.

e Body. The plan body describes the course of actions
that will be executed if the plan is adopted.

When a plan has a goal attribute that matches with cur-
rent goals and its precondition is satisfied, then the plan
can be considered as an applicable plan. A plan to be exe-
cuted is selected from applicable plans. The selected goals
and plans to be committed for execution are retained as
intentions. The committed intentions provide constraints
on further deliberations and the process of finding ways to
achieve goals.

2.2 Planning and Bounded-Rationality

The main challenge in building a BDI agent is to ensure
the right portions of time for deliberation and the appropri-
ate strategy to maintain commitment given the fact that the
deliberations are costly. Deliberations are computational
processes that might take up resources which can reduce
the agent’s responsiveness to change. This issue is known
as bounded rationality: a property of an agent that always
functions appropriately while computational resources are
scarce [15].

The use of prescribed knowledge for actions is the key as-
pect contributing to bounded rationality. Plans as recipes
can be seen as heuristics that limit the search for appro-
priate actions. When plans are adopted as intentions, they
constrain further considerations of alternatives and thus re-
duce the need for extensive computational power in the de-
cision making process. Another approach is to control the
commitment to execute the intention by choosing whether
to maintain the commitment or just drop it and restart the
deliberation [9, 14].

Thus, processes of an intentional agent has certain aspects
that determine the quality of its decision to achieve the goal:

e Deliberation. The strategy used to select which goal
and plan to adopt obviously determine the appropri-
ateness of the decision.

e Plan representation. The prescribed plans determine
which part of goals should be focused on and when.
Thus, plans determine the effectiveness of subsequent
decision making.

e Commitment. Based on the current intention, commit-
ment strategy determine whether to drop the intention
or keep it on when certain events occur. The commit-
ment determine that the agent behave appropriately
when changes happen in the environment.

This paper argues that those aspects are also supported in
the proposed neural network model. The inherent features
of learning and generalization of the neural network support
even more aspects.

Budhitama Subagdja, Ah-Hwee Tan « A Self-Organizing Neural Network Architecture for Intentional Planning Agents

3. SELF-ORGANIZING NEURAL NETWORK

FOR PLANS

Some of the challenges in using neural networks as the
basis for intentional agents can be described as follows:

e Sequential processing. A representation of plan com-
prises a description of a sequence of actions.

e Hierarchical processing. Intentions can be structurally
recursive consisting goals and subgoals relations.

e Learning and performance integration. As an architec-
ture for agent, the model should operate dynamically
by experience, integrating all aspects of decision mak-
ing and execution.

The proposed neural architecture in this paper is based
on Adaptive Resonance Theory (ART) [3] as a family of
neural architectures that uses the principles derived from
an analysis of human and animal cognitive information pro-
cessing. It is a class of self-organizing neural networks that
can learn continuously in a fast but a stable manner. As
a distinct feature of ART, there is no separation between
learning phase and activation phase, which partially solves
the list of challenges mentioned above.

In particular, the proposed model extends a derivation of
ART called fusion ART that employs multiple channels of
input/output [17]. This multi-channel ART has been proven
to integrate different types of learning and different modes of
operations in a single architecture [16, 17, 18]. The model of
intentional agents presented, extends the fusion ART model
to deal with sequences and hierarchical processing compris-
ing common operations for intentional agents.

3.1 Fusion Adaptive Resonance Theory

The basic ART model works as an unsupervised learning
system. Unlike other standard neural network models, an
ART network classifies the input pattern by searching for a
resonance condition: the category selected actually matches
the input pattern. The search process requires bi-directional
activations which are bottom-up from the input pattern to
select a category and top-down from the selected category to
measure the matching level of the respective input pattern.
Another distinct feature of ART model is that when the
search cannot find a resonance, a new category is allocated
to fit with the input pattern, allowing the network to grow.

F Category field
2 =) o o =Y o o oY_/
cl 2 cn
R Cat p/kwv)w’ il
Input field c7 Input field c2 Input field cn

Figure 1: Fusion ART architecture.

The fusion ART employs multiple input fields each may
use independent parameters and different encoding schemes
(Figure 1). This approach enables the network to process
different input modalities, thanks to the approach of inte-
grating Fuzzy Logic and ART [4]. The Fuzzy ART network
applies complement coding to cover a wider range of input
pattern. Different channels can also be used as outputs so
that different operations and learning mechanisms (such as
supervised and reinforcement learning) can be applied [17].

The particular structure of multi-channel ART can de-
scribed as follows.

Input vectors and fields: Let I¢* = (ItF Is%, ... IcF)
denote an input vector, where If* € [0, 1] indicates the input
i to channel ck, for k =1,...,n. With complement coding,
the input vector I is augmented with a complement vector
I¢* such that If* = 1 — If*. Let F{* denote an input field
as a buffer that holds the input pattern for ck and x°* =
(x$F, 25k, ..., xSF) is the activity vector of F£¥ that holds the
input vector (including the complement).

Category fields: Let F; denote a category field and 7 >
1 indicate that it is the ith field. The standard multi-
channel ART has only one category field which is F> and
Y = (y1,¥2,.-.,Ym) is the activity vector of Fs.

Weight vectors: Let W;k denote the weight vector associ-
ated with the jth node in F5 for learning the input pattern
in FEF.

Parameters: Each field’s dynamics is determined by choice
parameters oS > 0, learning rate parameters 85* € [0,1],
contribution parameters 4¢* € [0,1] and vigilance parame-
ters p§t € [0,1].

The dynamics of a multi-channel ART can be considered
as continuous resonance search processes which consist of
basic operations as follows.

Code activation: A node j in F is activated by the choice
ek p ek
function T; = S 7_, v* DA | where the fuzzy AND

uck_chk‘)
operation A is defined by (p /\Jq)z = min(pi, ¢;), and the
norm |.| is defined by |p| = >°, p: for vectors p and q.
Code competition: A code competition process follows to
select a F» node with the highest choice function value. The
winner is indexed at J where Ty = max{Tj : for all F> node j}.
When a category choice is made at node J, y; = 1; and
y; = 0 for all j # J indicating a winner-take-all strategy.
Template matching: A template matching process checks
if resonance occurs or specifically if for each channel k, the
match function mSF of the chosen node J meets its vigilance
ck ck
criterion: m$F = %

> p*. If any of the vigilance
constraints is violated, mismatch reset occurs or T; is set
to 0 for the duration of the input presentation. Another F5
node J is selected using choice function and code competi-
tion until a resonance is achieved. If no selected node in F5
meets the vigilance, an uncommited node is recruited in F»
as a new category node selected by default.

Template learning: Once a resonance occurs, for each
channel ck, the weight vector w$* is modified by the follow-

ing learning rule:wik(new) =(1- ,BCk)WSMOld) + B (xF A
ck(old)
w).

Activity readout: The chosen F> node J may perform a

readout of its weight vectors to an input field F£* such that
xck(new) — Wf:]k

3.2 Invariance Principle

In the standard configuration of multi-channel ART, a
node in the category field encodes the association between a
node in the category field and nodes in input fields in a sin-
gle period of time. However, a single binary-valued node can
not associate different input patterns accross different time.
Although the category field allows incremental learning by

1083

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

recruiting uncommitted nodes for new categories, no infor-
mation about time or order of the pattern occurrences can
be captured. Our proposed model extends the multi-channel
ART model so that it can associate and group patterns ac-
cross time.

A suitable way to capture temporal patterns has actually
been suggested in some early works of the ART neural net-
work model. Grossberg proposed the Invariance Principle
that applies to a neural field to represent a serial order of
activations which can be used to model how temporal pat-
terns are stored in working memory [7]. The principle sug-
gests that the ratio of values of codes from previous inputs
remains invariant as new inputs enter the network. The val-
ues of individual codes are arranged in such a way that both
the items and the temporal order in which they occurred are
encoded by their activity pattern. The principle has been
used in STORE (Sustained Temporal Order Recurrent) net-
work that mimics the behavior of working memory based on
cognitive data about short-term memory [1].

The invariance principle suggests that to retain the tem-
poral order in a neural field, each entry of activation item
multiplicatively modifies the activity of all previous items.
By tuning up different parameters in the multiplicative func-
tion, different kinds of analog patterns may emerge in the
field which reflect the order the activations are presented. In
fact, the model has accurately emulated the characteristic
of serial learning conforming the psychological data about
human working memory.

3.3 Sequential Working Memory for Plans

Based on the principle of code invariance, a similar tech-
nique can be applied to fusion ART for dealing with sequen-
tial and hierarchical patterns and information. Gradient en-
coding is a simplified version of the invariance principle or
the original STORE model in terms of how the activation
values are set in the neural field. Simple constant increments
(decrements) are used instead to determine each activation
value. The simplification is used because fusion ART is de-
veloped not in order to mimic the behavior of human mem-
ory and the use of mere additions (subtractions) in gradient
encoding are more practical for realizing the model.

To represent a sequential order in gradient encoding a
value can simply indicate a time point or a position in an
ordered sequence. To retrieve or reproduce the sequence,
the larger activations are recalled first and hence represent
codes that activate earlier. Suppose to,t1,t2,...,t, denote
time points in an increasing order, and y;, is a node value
of the activity vector of the category field that is activated
or selected at time t;, the category field follows the gradient
encoding if y¢q > yi; > Y, > ... > yi, holds.

Sequence readout: Let F» be the category field apply-
ing the sequential encoding. The node with the highest
activation is selected and indexed at J. T; = max{T}; :
for all F» node j}. The selected node then performs read-
out to the input fields so that x°*®*%) = w . After the
readout, the node J is reset so that y; = 0 and the select-
readout cycle continues until all nodes in F> are zero.

A sequence can be stored by setting the activation value
of a selected node according to its order in the sequence
relative to the previous selection. Depending on the func-
tionality of the category field, different kinds of ordering can

be employed to store different sequential order. Given the
time points ¢; and a node value y;; that is activated at the
respective time point, if the values are stored in an increas-
ing order so that y;, < vy < Ytg < ... < Y, , the field
behaves like a stack or a FILO (First In Last Out) data
structure. On the other hand, if the values are stored in a
decreasing order so that y;, > y¢; > yi, > ... > Yt,, the field
acts like a queue or FIFO (First In First Out) data structure.

First In Last Out: To make the field F> behaves as a First
In Last Out memory, firstly a node is selected in F» with the
resonance search process. If the last selected node in F» is
J, the value of the node is set to the order parameter 7 such
that y; = 7 and then 7% = 70 L4, 0 <7< 1. v
is the increment (decrement) factor, and 7 is initialized at
zero at the beginning of the sequence.

First In First Out: To make I3 as a First In First Out
memory, the selected node value is set to 7, y; = 7 and then
rlrew) — £(old) _ o, 7 is initialized at one at the beginning
of the sequence and 0 < 7 < 1.

Figure 2 shows different types of sequential ordering in
gradient encoding compared with the standard activation.

, £, 07 08 [] oo
(ii) P e = o | = re—

iy " BT P e —
Fﬂ e P v

Figure 2: (i) Standard code activation; (ii) First In
First Out activation pattern, and (iii) First In Last
Out activation pattern

The gradient encoding technique enables all possible group-
ings of sequential events to be learnt in a stable and contin-
uous manner. It can be used to leverage the multi-channel
ART so that sequences and a temporary hierarchical struc-
ture can be learnt and processed. However, this sequen-
tial processing requires additional category fields with dif-
ferent types of connection. The additional fields categorizes
or chunks sequences that are formed as analog patterns of
activation in another category field.

3.4 iFALCON: A Neural-Based Intentional
Agent Architecture

iFALCON is an intentional agent architecture built by ar-
ranging and grouping different fusion ART networks in a
certain way. As shown in Figure 3 iFALCON consists of
four input/output fields: F*, Ff2, Ff3, and F¢* denoting
beliefs, desires, critic, and action fields respectively. The be-
liefs and desires fields correspond to the beliefs and desires
components of the BDI model. The action field represents

1084

Budhitama Subagdja, Ah-Hwee Tan « A Self-Organizing Neural Network Architecture for Intentional Planning Agents

the action to take at moment, while the critic field reflects
the differences between the values in beliefs and desires field.
Instead of just being connected to one category field like in
fusion ART, these input (output) fields, are connected to
two category fields: Fy and F3 denoting plans and sequencer
fields which represent the current selected plan and the cur-
rent executed action in a sequence respectively. Fy operates
following FIFO (First In First Out) activation model. Fur-
ther, F5 and F¥ are connected to the top Fj field which
operates following the FILO (First In Last Out) sequence

model.
F; (Fio
s s
Ml T Wl EIFO)
< ¥5| Plans T °Y Sequedcer F¢
F2 2 n Y3 F3
cl c.
w,. g 2 c4
2j wzj WZ' VM w3(
74 X . .
AR x] Fo xZ | [FY Al
Beliefs Critic Desires Action

Figure 3: iFALCON

Beliefs and critic field are connected to the plans field,
whereas action to the sequencer. Desires field is connected
to both plans and sequencer field. There are extra connec-
tions between the plan and the sequencer category fields and
each category field is further connected to a FILO (First In
Last Out) field.

A plan can be encoded by setting up the appropriate
weight values of the neural network connections. Nodes
in plans and sequencer field represent plans and sequences
respectively. An attribute of a plan is encoded as weight
values in the connections between a plan node and the cor-
responding input/output field. The use of the two plan and
sequencer fields allows hierarchical groupings of actions and
a sequence into a single category node in the plan field. Each
category node in sequencer encodes a pattern of action in
the input/output fields. Through the extra connections be-
tween plan and sequencer, a node in plan can also encode
a collection of actions represented as different activations in
sequencer.

Plan insertion by learning: A new plan can be learnt by
applying bottom-up activations to both F5 and F5. While a
node J in F5 is allocated and active, each action of the plan
is presented subsequently one at a time to Ff* and Jor F 2 to
activate I3 to capture the sequence in FIFO mode. When
the sequential pattern is totally formed in F3, the sequence
can be attached permanently to the plan by adjusting the
connection weights between F5 and F¥.

When all plans are assumed to have been encoded appro-
priately as neural connections and nodes, it is possible to
emulate the deliberation and execution cycle of BDI agent.
The cycle can be described as follows:

Critic evaluation: At the beginning, the values in beliefs
and the desires are compared with a match function m¢. If
m° is greater than a vigilance p the goal is satisfied and the
process can be stopped. Otherwise, it continues to the next
stage.

Plan selection: When the match is low, the deliberation

1085

process is conducted by searching a resonance condition be-
tween the plan field F¥ and some input/output fields (de-
sires, desires, and beliefs). The resonance search proceeds
to find and select a category node in F3 representing a plan,
just like the search process described in the last subsection.
Plan execution: After a plan node is selected, the plan is
executed by a readout process from the selected node in the
plans field to sequencer and further down to the respective
input/output fields. A sequence readout of FIFO model
is conducted iteratively from sequencer to the action field,
until the ordering parameter 7 < 0.

Subgoal posting and backtracking: During the execu-
tion process, a subgoal can be posted as a special type of
action. A subgoal can be posted when a predefined node in
Ff* is activated. The subgoal, which is encoded as connec-
tion values between a node in sequencer and nodes in desires
field, overrides the activation values of desires which trigger
a further plan selection process. However, before replacing
the desires, the current active nodes in plan and sequencer
field are stored into the Fy following FILO memory model.
The stored plan in Ff can be restored by conducting a se-
quence readout process from Fy to the respective nodes in
F5 and F3. The restoration is conducted only when the
current adopted plan succeeds or the current critic match
function satisfies the vigilance.

3.5 Deliberation, Planning, and Learning

The basic execution cycle of the intentional agent archi-
tecture described above performs well if the available knowl-
edge (plans) is complete without the chance that the agent
make mistakes. The basic execution can not handle the sit-
uation appropriately when no plan can be found to solve
the current goals. A different strategy can be applied to the
execution cycle so that another plan that may contribute
to the main goal achievement can still be selected although
it does not perfectly match with the current goal. In fact,
the standard ART model employs a new node recruitment
which ensures that the network always ends up with a clas-
sification although no previous categories match the current
input.

One approach of selecting plans without explicit directions
from a higher level plan is by updating the vigilance param-
eter of the desires field to relax the resonance search process.

Planning by relaxing deliberation: When the resonance
search to select a plan fails to find a winner node in Fy, a
new category (plan) node is recruited automatically in Fs.
If the readout from F35 to F3 produces no activation in F5 (a
new plan is just allocated), the current activation patterns
in F5 and F3 are stored in Fy in FILO mode. The vigilance
p? of F? is then reduced by a certain value (e.g 0.1) while
performing the resonance search iteratively until an existing
node (plan) is found in Fy§. In that case, p°* is restored to
its original value, and cycle continues as normal. If none
still can be found, the activation status of all nodes in Fy
are refreshed to allow previous reset node to be reselected.

The planning process above is not designed to produce
the optimal selection. Instead, it can only be applied to
search a plausible solution that leads the agent to achieving
the goal. The reason of relaxing the vigilance parameter
of desires field is to allow another plan that might have
goals coincide with the current desires and is still currently

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

applicable (the plan precondition still strongly matches with
current beliefs) to be selected. The strategy exploits the
chance that subsequent applications of the same method can
lead the agent to achieve the overall goals.

However, the result of the above planning method can
only be used instantly in a single series of the agent per-
formance. For a longer term, the sequence produced by
the planning must be permanently captured and assigned
to the respective plan. The challenge is that the planning
above produces a sequence of plans instead of a sequence
of atomic actions. Consequently, the plan that captures the
sequence must transform the sequential application of plans
into a series of subgoals. In iFALCON, this is handled by
storing the sequence in the FILO field temporarily before it
is learnt as weighted connections.

Hierarchical plan learning: When a new plan allocated
for planning is currently stored in Fy and the current adopted
plan just successfully achieves the current goal, the value of
the Ff* (action) field is replaced momentarily to achieving
action before the new plan in FY is restored to Fy5. After the
upper level plan is restored from Fy to F5, and the readout
from F5 to F3 produces no activation in Fy (indicating the
current restored plan is the new allocated one), a node in Fj
is selected by a bottom up activation based on Ff? and Ff*
as a new subgoal action following the FIFO mode of gradi-
ent encoding. The activation pattern in F3 is retained for
a latter use by adjusting the weighted connections between
F5 and F¥ following the template learning rule. If any value
(greater than zero) exists in Fy because of a readout from
F¥ to F3 (indicating a sequence has been temporarily re-
tained), the order parameter 7 of F¥ is set to the minimum
activation value (but greater than zero) in F5. The cycle
of planning continues until the planning goal is achieved in
which the weights between F5 to F5 can be adjusted to store
the sequence permanently.

The planning and learning described above shows that
the architecture integrates the process of deliberation, plan-
ning, plan execution, and plan learning without separations.
It follows the principle of ART network that combines clas-
sification and learning with no separate phases. The plan-
ning depends on pre-existing plans comprising deliberation
and execution while the learning depends on the planning
to get the source experience. Another characteristic indi-
cated from the processes above is that the FILO Fy field
may occasionally retain the values permanently during the
plan learning process although its main function is to store
values temporarily.

In summary, the deliberation process of intentional agent
is supported by the use of resonance search to select a cate-
gory and the vigilance adjustment to bring out more options.
The execution of the selected plan can be realized by the use
of temporal encoding in certain fields following FIFO and
FILO memory model. It is also possible to apply a certain
commitment strategy by arranging the dynamics of ordering
parameter and determining the conditions in which deliber-
ation, vigilance adjustment, FILO readout, and learning are
activated.

4. CASE STUDY AND EXPERIMENT

To test our model, we have implemented the model to
solve the block world problem. In block world, the task is to

1086

put some blocks into a certain goal configuration. Figure 4
shows an instance of a block world problem in which the
target is to stack the blocks from one block configuration
(the start) to a different block configuration (the goal). The
block world is a domain involving sequential and hierarchical
actions structure to solve the problem.

Figure 4: Block World.

To setup the model to solve the block world problem, the
respective input/output fields are made to suit the domain
problem. Beliefs and desires fields are expressed as vec-
tors with complement coding. In complement coding, an
input/output value is represented as a pair of complement-
ing values which corresponds to a pair of node in an in-
put/output field. Each node pair represent the truth value
of a proposition. It is also possible to express don’t-care con-
dition using the complement coding. If the pair for a propo-
sition p is expressed under complement coding as (v,?)? for
v refers to the truth value of p, then three different val-
ues can be expressed as follows: (1,0)” = p; (0,1)? = —p;
(1,1)? = (dont-care condition). Any proposition always
matches the don’t-care condition as the pair (1,1)? will al-
ways result in the same value when applied to the template
matching function.

The block world domain is made to use the following
propositions: bupA, bbtmA, bupB, bbtmB, bupC, bbtmC to
express the situation. Each proposition denotes a condition
on the top or the bottom of a block. For example bupA de-
notes that there is another block on top of block A, while
bbtmB denotes some block under the block B. The negation
of a proposition (expressed with a hyphen — symbol) states
otherwise. For example -bupA and -bbtmB denote there is
no block on top of A and B is lying on the ground respec-
tively. The list of propositions is mapped to the vector rep-
resentation as a list of value pair employing the complement
coding. Each node in the action field Ff* is also associated
with a primitive action. Nine external actions are defined
as actions that directly change the block world environment
state. Furthermore, an internal action is defined as an ac-
tion for subgoaling. The action field does not employ com-
plement coding and applies a competitive valuation (only a
single node is active).

Two types of plans are applied: primitive plans which
consists of only a single step of action such as follows,

{’goal’: [’-bupB’,’-bbtmA’],
’pre’: [’-bupA’,’bbtmA’,’bupB’],
’body’: [{’do’:[’downA’]}]
‘util’: [1.01}

and control plans that may include sequences and subgoals
such as follows

{’goal’: [’-bupA’,’bbtmA’, ’bupB’,
’bbtmB’, *bupC’, ’~bbtmC’],

‘pre’: [1,

’body’: [{’achieve’:[’-bupC’,’-bbtmC’]},
{’achieve’: [’bupC’, ’bbtmB’]1},
{’achieve’: [’bupB’, ’bbtmA’]}]

Jutil’: [1.01}

Budhitama Subagdja, Ah-Hwee Tan « A Self-Organizing Neural Network Architecture for Intentional Planning Agents

The primitive plans can be used as basic rules that model the
environment, while the control plan is used as a strategy to
achieve the goal. There are twelve different primitive plans
and one control plan in the experiment.

To evaluate the model, two cases are formulated as follows:
(1) A block world agent with complete learnt plans (both
primitive and control plans); and (2) an agent with learnt
incomplete plans (primitive plans only). Each configuration
is tested to achieve the goals shown in Figure 4 from twelve
different initial blocks configurations (Figure 5).

[B] [B]
] Booge o o

1 2 4 5
P g

Figure 5: Tested initial block configurations.

Each iFALCON plans configuration is applied to reach the
goal from every block configuration. Different configurations
may produce different numbers of steps. A random choice
mechanism is applied to the internal mechanism of decision
so that when more than one node have the same maximum
values, a plan node is selected at random. Consequently, the
choices may be different even for the same configuration.

Initial with prior primitives + control Plans with prior primitives plans only
block number of improvement Failures| pumber of improvement Failures
conf. steps indicated steps indicated
min | max | improved | max diff. min | max |improved| max diff.
1 4 4 S| 12
2| 5| 5 9 9
3 3l 3 30
4 2l 2 30
5 31 3 30
6 3| 8|indicated 5 12] 30)
7 2| 2 30)
8| 3 3 1 1
9 31 3 3| 1l]indicated 4 28
10) 3 3 30)
11 4| 11}indicated 7 8| 30
12 4 4 5| 31 10|

Table 1: Results of Block World.

The test looks at the use plan execution, planning and,
the autonomous plan learning capabilities. For each block
configuration and two different types of initial plans, the
architecture is tested to achieve the goal of block world.
From consecutive trials (plans learnt from previous trials
are retained) the experiment is conducted to test whether
it learns plans that can be useful to subsequent runs within
the same configuration.

Table 1 presents the results from 30 runs of 30 consec-
utive trials for each block configuration and each type of
initial plans. The table shows the maximum and minimum
number of steps from 30 consecutive trials that successfully
achieve the goal. It also shows whether a performance im-
provement is indicated during consecutive trials. A configu-
ration is marked as ’indicated’ if there is an increase or con-
vergence of performance (reduction of the number of steps
to achieve the goal) in consecutive trials. If there is an indi-
cation of improvement, the table also shows the maximum

reduction or difference in the improvement. The number of
achievement failures occur in 30 runs is also presented for
each configuration.

The experiment reveals that when the control plan is in-
cluded, most block configurations can be solved. There are
cases in two configurations that the agent still fails to achieve
the goal (twelve cases in configuration 6 and eight cases in
configuration 11). The failures can still happen due to the
initial plans that are actually unsuitable when applied to
those particular configurations. A deeper analysis through
the trace of execution reveals that the last step of the con-
trol plan still requires further planning which may add the
chance of failure.

However, the two configurations reveal that performance
improvements can be made by learning new plans. In con-
figuration 6, there is a case in which the number of steps is
reduced by five after learning is conducted in a previous trial.
In configuration 11 the number of steps is reduced by seven.
The improvement indication, however, does not imply that
the learning does not take place in other configurations. In
fact, most configurations that have the same number of steps
to achieve the goal also have cases involving plan learning
at the beginning trial. The learnt plans makes the agent
follows the same plans accross different consecutive trials.

In one case, when the complete plans are applied as the
initial configuration, the first trial can capture a new plan
which can be mapped from the respective neural connections
as follows:

{’goal’: [’-bbtmC’,’-bupC’],

’pre’: [’bbtmB’, ’bbtmC’, ’-bbtmA’, ’bupC’, ’-bupB’, ’bupA’],
’body’: [{’achieve’: [’-bbtmB’, ’-bupC’]l},
{’achieve’: [’-bbtmC’, ’-bupA’]}],

Jutil’: [1.0]}

A closer look to the sample learnt plan reveals that the agent
can learn plans consisting of a sequence of subgoals rather
than atomic actions. Furthermore, the sample learnt plan
above indicates that the plan is created to achieve a subgoal
in the control plan. It implies that the learning takes place
only when necessary to plan or solve certain tasks.
On the other hand, when only primitive plans are pro-
vided initially, the result is not as good as when the com-
plete plans are provided. Table 1 reveals that only three
(configuration 1, 2, and 8) out of twelve configurations suc-
cessfully achieve the goal without failures. Moreover, there
are seven configurations that totally cannot be solved. Only
a few cases in one configuration (configuration 9) indicate
performance improvement. Interestingly, there is a config-
uration in which the application of merely primitive plans
becomes superior such as configuration 8. It takes only one
step to solve the problem compared with the minimum three
steps by its complete plans counterpart for the same config-
uration.
When only primitive plans are provided initially, a first
trial captures a new plan which can be mapped into a sym-
bolic description as follows:
{’goal’: [’bbtmB’, ’-bbtmC’, ’bbtmA’, ’bupC’, ’bupB’, ’-bupA’],
’pre’: [’bbtmB’, ’bbtmC’, ’-bbtmA’, ’bupC’, ’-bupB’, ’bupA’],
’body’: [{’achieve’: [’-bupA’]}, {’achieve’: [’bbtmA’, ’bupB’l},
{’achieve’: [’bupC’]}, {’achieve’: [’bbtmB’, ’bupA’l},
{’achieve’: [’-bupC’]}, {’achieve’: [’bbtmB’, ’bupC’l},
{’achieve’: [’bbtmA’, ’bupB’1}],

*util’: [1.0]}

The results indicate that the quality of planning and learning
is sensitive to the pre-existing knowledge and the initial task

1087

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

configuration. The right choice to start with may also lead
the agent to further learn the appropriate knowledge to solve
the task. The sample learnt plan starting with primitives
only shows that the plan learnt may not be optimal or even
include a series of mistakes.

Overall, the case study has confirmed that the neural net-
work model can function as an intentional agent architec-
ture driven by explicit plans. The results also reveal that
the model can emulate and integrate the process of delib-
eration, planning, and learning beyond intentional or BDI
model so that new solutions can be found even though the
initial knowledge available is limited and incomplete. How-
ever, the learning process also relies on the prior knowledge
available. Bad knowledge would even make learn worse.

5. CONCLUSION

This paper has presented a model of intentional agent re-
alized as a self-organizing neural network architecture. The
model explains how beliefs, desires, intentions, and plans
can be mapped into a composition of multi-channel adaptive
resonance theory networks. The model uses a new kind of
temporal activation encoding to represent sequences and to
handle hierarchical processing structure. The encoding tech-
nique allows sequences to be grouped and processed resem-
bling the structure and operations of plans. The model emu-
lates the processes involved in an intentional agent by seam-
lessly integrating deliberation, plan execution, and commit-
ment as a single unit of activation cycles. Furthermore,
based on the principle of adaptive resonance theory, plan-
ning and learning can be integrated as parts of the activation
cycles.

The neural agent model has been implemented and tested
to solve problems. Beyond intentional agents, the exper-
iment confirms the capability of planning and learning to
explore and capture new solutions. However, the test also
reveals that the quality of planning and learning is sensitive
to the availability of the appropriate prior knowledge. More
in-depth studies are required to obtain the complete picture
of the characteristics of the plan learning so that initial plans
and network parameters can be setup more effectively.

The experiment conducted has indicated the potential of
integrating a myriad of reasoning and learning mechanisms
for agents accomplishing certain tasks. The neural agent
model suggested comprises bi-directional pathways of acti-
vations which make it possible to select a plan or activating a
sequential pattern from different directions so that the plan
can also be selected based on the presentation of action se-
quences rather than triggered by goals. Although the model
and the experiment are still designed for a single agent do-
main, it is possible to extend the model to deal with more
complex issues involving multiple agents like plan recogni-
tion or learning by imitation.

In any case, the neural model for intentional agent ar-
chitecture can bridge two different approaches of building
agents. Top-down formal symbolic approaches can be in-
tegrated with bottom-up non-symbolic processes to accom-
plish a single task domain. Both directions can support and
enrich each other to realize an agent architecture that ulti-
mately deliberate, plan, and learn.

6. REFERENCES
[1] G. Bradski, G. A. Carpenter, and S. Grossberg.
STORE working memory networks for storage and

1088

[10]

[11]

[14]

[15]

[16]

recall of arbitrary temporal sequences. In Biological
Cybernetics, volume 71, pages 469—480. 1994.

M. E. Bratman. What is intention? In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in
Communication, chapter 2, pages 15-31. MIT Press,
Cambridge, 1990.

G. A. Carpenter and S. Grossberg. Adaptive
Rresonance Theory. In M. Arbib, editor, The
Handbook of Brain Theory and Neural Networks,
pages 87-90. Cambridge, MA: MIT Press, 2003.

G. A. Carpenter, S. Grossberg, and D. B. Rosen.
Fuzzy ART: Fast stable learning and categorization of
analog patterns by an adaptive resonance system.
Neural Networks, 4:759-771, 1991.

D. C. Dennet. The Intentional Stance. MIT Press,
Cambridge, 1987.

M. Ghallab, D. S. Nau, and P. Traverso. Automated
Planning: theory and practice. Elsevier/Morgan
Kauffman, Amsterdam, 2004.

S. Grossberg. Behavioral contrast in short-term
memory: Serial binary memory models or parallel
continuous memory models? Journal of Mathematical
Psychology, 3:199-219, 1978.

F. Ingrand, M. Georgeff, and A. S. Rao. An
architecture for real-time reasoning and system
control. 7(6):34-44, 1992.

D. Kinny and M. Georgeff. Commitment and
effectiveness of situated agents. In Proceedings of the
12th International Joint Conference of Artifical
Intelligence 1991, pages 82-88, Sidney, 1991.

S. M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, 2006.

M. E. Pollack. Plans as complex mental attitudes. In
P. R. Cohen, J. Morgan, and M. E. Pollack, editors,
Intentions in Communication, chapter 5, pages
77-103. MIT Press, Cambridge, 1990.

M. E. Pollack. The uses of plans. Artificial
Intelligence, 57(1):43-68, 1992.

A. S. Rao and M. P. Georgeff. BDI agents: From
theory to practice. In Proceedings of the 1st
International Conference on Multi-Agent Systems
(ICMAS-95). San Francisco, 1995.

M. Schut, M. Wooldridge, and S. Parsons. The theory
and practice of intention reconsideration. In Journal of
Experimental and Theoretical Artificial Intelligence,
volume 16, pages 261-293. 2004.

H. A. Simon. Models of Bounded Rationality. MIT
Press, Cambridge, 1982.

A.-H. Tan. FALCON: A Fusion Architecture for
Learning, COgnition, and Navigation. In proceedings,
International Joint Conference on Neural Networks
(IJCNN’04), pp. 3297-3302, 2004.

A.-H. Tan, G. Carpenter, and S. Grossberg.
Intelligence Through Interaction: Towards A Unified
Theory for Learning. In proceedings, ISNN’07, LNCS
4491, Part I, pp. 1098-1107, 2007.

A.-H. Tan, N. Lu, and D. Xiao. Integrating temporal
difference methods and self-organizing neural networks
for reinforcement learning with delayed evaluative
feedback. IEEE Transactions on Neural Networks,Vol.
9, No. 2 (February 2008), 230-244.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

